A Note on Waring ’ s Number Modulo

نویسنده

  • Julio Subocz
چکیده

The Waring number of the integers modulo m with respect to k-th powers, denoted by ρ(m, k), is the smallest r such that every integer is a sum of r k-th powers modulo m. This number is also the diameter of an associated Cayley graph, called the Waring graph. In this paper this number is computed when m is a power of 2. More precisely the following result is obtained: Let n, s and b be natural numbers such that b is odd, s ≥ 1 and n ≥ 4. Put k = b2. Then (i) if s ≥ n− 2, then ρ(2, k) = 2 − 1. (ii) if k ≥ 6 and s ≤ n− 3, then ρ(2, k) = 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for complete multiple exponential sums

where the sum is taken over a complete set of residues for x modulo q and eq(t) = e2πit/q. The study of these sums is readily motivated by applications in analytic number theory and elsewhere. The first important estimates for sums in one variable appear in the work of Weyl (1916) on uniform distribution. This led to van der Corput’s method with applications to the zeta function, the divisor pr...

متن کامل

An Upper Bound for the Representation Number of Graphs with Fixed Order

A graph has a representation modulo n if there exists an injective map f : {V (G)} → {0, 1, . . . , n − 1} such that vertices u and v are adjacent if and only if |f(u)− f(v)| is relatively prime to n. The representation number is the smallest n such that G has a representation modulo n. We seek the maximum value for the representation number over graphs of a fixed order. Erdős and Evans provide...

متن کامل

The Minimal Number of Three-Term Arithmetic Progressions Modulo a Prime Converges to a Limit

Given an integer q ≥ 2 and a number θ ∈ (0, 1], consider the collection of all subsets of Zq := Z/qZ having at least θq elements. Among the sets in this collection, suppose S is any one having the minimal number of three-term arithmetic progressions, where in our terminology a three-term arithmetic progression is a triple (x, y, z) ∈ S3 satisfying x + y ≡ 2z (mod q). Note that this includes tri...

متن کامل

The Minimal Number of Three-Term Arithmetic Progressions Modulo a Prime Converges to a Limit

Given an integer r ≥ 2 and a number υ ∈ (0, 1], consider the collection of all subsets of Z/rZ having at least υr elements. Among the sets in this collection, suppose S is any one having the minimal number of three-term arithmetic progressions, where in our terminology a three-term arithmetic progression is a triple (x, y, z) ∈ S3 satisfying x + y ≡ 2z (mod r). Note that this includes trivial p...

متن کامل

Math 254a: Zeta Functions and L-series

Theorem 1.1. Let G be a group of Dirichlet characters modulo n, and KG the associated field. Fix a prime number p, and let H1 ⊂ H2 ⊂ G be the groups of χ such that χ(p) = 1 or χ(p) 6= 0 respectively. Then G/H2 ∼= IKG,p ⊂ Gal(KG/Q), and G/H1 ∼= DKG,p (note that these are non-canonical isomorphisms). We are now ready to prove the theorem on factoring Dedekind zeta functions of sub-cyclotomic fiel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999